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Abstract

Chatter vibrations in cutting processes are studied in the present paper. A unified approach for the cal-
culation of the stability lobes for turning, boring, drilling and milling processes in the frequency domain is
presented. The method can be used for a fast and reliable identification of the stability lobes and can take
into account nonlinear shearing forces, as well as process damping forces. The applicability of Tlusty’s law,
which is a simple scalar relationship between the real part of the oriented transfer function of the struc-
ture and the limiting chip width, is extended to milling and any other multi-dimensional chatter problem
without neglecting the coupled dynamics. The given analysis is suitable for getting a deep understanding of
the chatter stability dependent on the parameters of the cutting process and the structure. Basic examples
based on experimental data of real machine tools include the dependence of the stability behavior on the
rotational direction in turning, the effect of axial-torsional structural coupling in drilling, and the dynamics
of slot milling.
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1. Introduction

The efficiency of machining operations is some-
times limited by the occurrence of undesired chat-
ter vibrations. Chatter leads to noise, bad surface
finish and increased wear of tools and machine tool
components. For increasing productivity and qual-
ity the dynamic simulation of mechanical interactions
between the machine tool and the cutting process is
important. In particular, the prediction of the so-
called stability lobes of chatter is used for optimizing
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the cutting process. Since more than 50 years [1, 2] it
is known that the regenerative mechanism is mainly
responsible for undesired chatter vibrations in cutting
processes. The wavy outer surface of the chip due
to vibrations at the previous cut generates dynamic
variations of the cutting force, which again creates
new waves on the inner surface of the chip. Altintas
and Weck [3] and Altintas [4] give a good overview
on the stability lobe theory of different metal cutting
and grinding processes.

Current research in the field of chatter stabil-
ity is dedicated to the influence of process damp-
ing [5, 6, 7, 8], the effect of the nonlinear cutting
force behavior [9], and the influence of non-constant
[10, 11, 12, 13] and non-uniform delays [15, 16, 17]
on the stability behavior of cutting processes. The
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aforementioned literature presents good methods and
results for the prediction of stability lobes for vari-
ous cutting processes and geometries. Nevertheless,
already for very simple cutting process models it is
sometimes difficult to understand the dependence of
the chatter stability on the structural dynamics and
the process parameters. A good understanding of the
chatter mechanism can contribute to an optimization
of the productivity already in the design stage of ma-
chine tools [18, 19]. Furthermore, knowing some sim-
ple relationships between structural behavior, cutting
conditions and chatter stability helps to find optimal
process parameters and to fix problems with unde-
sired vibrations during manufacturing.

In this paper a unified model for the dynamic cut-
ting force in machining is established in Sec. 2. The
model is kept as simple as possible, since the present
paper is focused on a deeper understanding of the re-
generative chatter mechanism. In Sec. 3 the chatter
stability analysis of cutting processes is put into an
universal theoretical framework in the frequency do-
main. The presented analysis can be used for a fast
calculation of the stability lobes for turning, boring,
milling and drilling processes with various process ge-
ometries and machine tools. It is based on the theory
of Altintas and Budak [20] for milling, but the pro-
cedure for solving the eigenvalue problem is different
from the existing literature [3, 4, 6, 20, 21, 22]. As a
consequence new insights into the dynamics of chat-
ter vibrations are available. Examples for the dynam-
ics of turning, drilling and milling based on experi-
mental data of real machine tools are shown in Sec. 4.
In particular the dependence of the stability lobes on
the rotational direction of the spindle in turning and
the effect of structural coupling for torsional-axial
chatter of twist drills is explained. Furthermore an
accurate scalar approximation for the stability anal-
ysis of slot milling is derived.

2. Dynamic cutting force model

For simplicity the basic model is established for a
static process geometry with only one cutting tooth
and a linear cutting force model. The geometry of
a turning process as an example of such processes
is shown in Fig. 1. The unit vector eh defines the

Figure 1: Geometry of a turning process for clockwise spindle
rotation. The symbols are explained in the text.

direction normal to the nominal cut surface, which
is equal to the radial direction at the tool tip in the
example of Fig. 1. With this definition of eh, the chip
thickness h(t) at time t can be written as

h(t) = h0 + eT
h (r(t − τ) − r(t)), (1)

where T denotes transposition. In Eq. (1) h0 is the
static chip thickness due to the constant feed velocity
vf and τ is the time delay between two subsequent
cuts. The vector r(t) specifies dynamical displace-
ments from a reference position of the tool tip, gener-
ated by the cutting force at time t. The displacement
vector r is specified in a fixed machine tool coordinate
system. In general, it contains two lateral displace-
ments x and y, axial displacements z and torsional
displacements θ around the spindle axis.

The cutting force Ftn = (Ft, Fn)T is specified in
tangential Ft and normal Fn forces at the cutting
edge (see Fig. 1) and contains shearing forces pro-
portional to the chip thickness h(t), as well as pro-
cess damping forces assumed to be proportional to
the velocity ṙ(t) of the vibration

Ftn(t) = bKtc

[(

1
knc

)

h(t) −
(

ktd

knd

)

eT
h τ ṙ(t)

]

. (2)

Here, b is the chip width and Ktc is the cutting pres-
sure of the shearing force in tangential direction. The
dimensionless coefficients knc, ktd and knd are the ra-
tios of the cutting pressure of the normal shearing
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force knc, as well as the cutting pressure of the tan-
gential ktd and normal knd process damping force to
Ktc. According to [5, 8, 21] the damping force coef-
ficients can be determined by

(

ktd

knd

)

=

(

µ
1

)

C

KtcRδ
, Rδ = V τ, (3)

with the process damping coefficient C, the cutting
velocity V , tool or workpiece radius R and the coef-
ficient of friction µ. The angle δ (in rad) is the angle
of rotation of the spindle between two successive cuts
at the same workpiece position. For the turning ex-
ample of Fig. 1, δ = 2π, and for milling and drilling
processes, δ is equal to the angle beetween the cutting
teeth of the tool.

For the chatter stability analysis only the dynamic
part of the cutting force without the static force due
to the static chip thickness h0 is relevant. The dy-
namic load vector F = (Fx, Fy, Fz,M)T is presented
in fixed machine tool coordinates to avoid the neces-
sity of a modal analysis of the structure. It can be
described by

F(t) = bKtc [Bc(r(t − τ) − r(t)) − Bdτ ṙ(t)] . (4)

In general the 4 × 4 coefficient matrices Bc and Bd

are specified by

Bc = T

(

1
knc

)

eT
h , Bd = T

(

ktd

knd

)

eT
h . (5)

The matrix T is a 4 × 2 dimensional matrix, which
transforms the two dimensional cutting force vector
Ftn of Eq. (2) at the cutting edge into the four dimen-
sional load vector F of Eq. (4). The tangential and
normal direction at the cutting edge can vary with
respect to the fixed machine tool coordinate system.
In this case or for tools with multiple teeth or a non-
linear cutting force behavior we refer to Appendix A
for the calculation of the matrices Bc and Bd.

The entries {Bc}kl and {Bd}kl of the coefficient
matrices are typically called directional factors. The
multiplication of the directional factors with the
scalar constants b and Ktc specifies variations of the
kth component of the load vector F due to a varia-
tion of the lth component of the displacement vector

r. Note that the same approach can be followed in
modal coordinates of the machine tool structure. In
this case the vector r contains the modal displace-
ments of M number of modes, the M -dimensional
vector eT

h projects modal displacements into chip
thickness variations and the M × 2 dimensional ma-
trix T projects tangential and normal cutting forces
into the load on each mode. In a modal descrip-
tion the directional factors {Bc}kl and {Bd}kl times
bKtc specify variations of the load on the kth mode
due to structural displacements of the lth mode, with
k, l = 1 . . . M .

3. Frequency domain stability analysis

3.1. Efficient approach for the identification of sta-

bility lobes

The stability lobes are lobed curves in the param-
eter plane spanned by spindle speed Ω = δ/τ and
chip width b. They separate stable and unstable
parameter regions. Directly on the stability lobes
the process is marginally stable and the structure vi-
brates with chatter frequency ωc and constant ampli-
tudes. Hence, a calculation of the stability lobes in
the frequency domain is useful. With the frequency
response functions (FRFs) Φkl(ω), k, l ∈ {x, y, z, θ},
the dynamic displacements of the structure can be
described by

r̂(ω) = Φ(ω)F̂(ω), (6a)
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ŷ
ẑ
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(6b)

where û(ω) denotes the Fourier transformation of
some vector u(t),

û(ω) =
1√
2π

∞
∫

−∞

u(t) e−iωt dt. (7)

By putting the cutting force of Eq. (4) in its frequency
domain representation into Eq. (6a), a closed loop for
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regenerative chatter vibrations at the stability lobes
is obtained

r̂(ω) = bKtcΦ(ω)
[

Bc(e
−iωτ −1) − Bdiωτ

]

r̂(ω).
(8)

Eq. (8) is only valid for constant coefficient matrices
Bc and Bd and constant spindle speeds Ω. If the
coefficient matrices are time-variant a zeroth-order
approximation (see Appendix A) gives in most cases
accurate results for the stability lobes. Deviations
may occur for milling with low radial immersion and
a small number of teeth [4] or for unequal tooth pitch
[7]. In these cases and in the case of spindle speed
variation a multifrequency approach [4, 10, 17] is nec-
essary, which is not discussed here.

Eq. (8) has the form of an eigenvalue equation,
where the eigenvalues λ can be defined as

λu = Φ(ω)
[

Bc(e
−iωτ −1) − Bdiωτ

]

u. (9)

The eigenvalues λ = λ(ω, τ) = λr(ω, τ) + iλi(ω, τ)
and the eigenvectors u = u(ω, τ) of Eq. (9) depend
on the frequency ω and the delay τ . In the direc-
tion of the eigenvectors u(ω, τ) Eq. (8) simplifies to
the scalar relationship 1 = Ktcbλ(ω, τ). Because chip
width b and cutting pressure Ktc are real-valued, the
imaginary parts λi of the eigenvalues for ω corre-
sponding to the chatter frequency must vanish

λi(ωc, τ) = 0. (10)

The stability lobes can be calculated from the real
part λr of the maximal eigenvalue with vanishing
imaginary part as

bc =
1

Ktcλr(ωc, τ)
. (11)

Eq. (11) and Eq. (10) specify the relationship between
chatter frequencies ωc, critical chip widths bc and de-
lays τ , where purely periodic vibrations at the tool
tip with r(t) ∝ u(ωc, τ) eiωct are possible. For van-
ishing chip widths b → 0 vibrations at the tool tip
decay exponentially because of structural damping
and consequently the system is stable. For increas-
ing chip width b and fixed delay τ the stability behav-
ior changes exactly at the lowest critical chip width
bc, where a periodic structural vibration is possible.

Thus, according to Eq. (11) only the largest real part
λr of the eigenvalues λ(ωc, τ) is relevant for the calcu-
lation of the stability lobes. The following procedure
is proposed.

1. Determine the nonzero eigenvalues λ(ω, τ) of
Eq. (9) analytically as a function of ω and τ .

2. Select a spindle speed Ω or a time delay τ .

3. Calculate the possible chatter frequencies ωc for
given τ by Eq. (10).

4. The stability limit bc is specified by the largest
λr of all pairs ωc, τ according to Eq. (11).

In higher dimensional problems it can be useful to
perform step two before step one and calculate the
eigenvalues of Eq. (9) for the selected delays τ and a
frequency sample numerically.

3.2. Application of Tlusty’s law to multi-dimensional

cutting processes

If the influence of process damping can be ne-
glected, Bd = 0, the eigenvalues of Eq. (9) can be
written as follows

λ(ω, τ) = σ(ω)(e−iωτ −1), (12a)

with σ(ω)v(ω) = Φ(ω)Bcv(ω). (12b)

Here, the eigenvalues σ(ω) = σr(ω) + iσi(ω) and the
eigenvectors v = v(ω) depend only on the frequency
ω. If Eq. (10) is applied to Eq. (12a), the relation
λr(ωc, τ) = −2σr(ωc) between the real parts of λ
and σ holds for all delays τ . Putting this relation
into Eq. (11) reveals

bc = − 1

2Ktcσr(ωc)
. (13)

Eq. (13) is a generalization of the stability law
of Tlusty [1, 3, 8] to multi-dimensional cutting pro-
cesses. It can be used to calculate the stability border
for a given chatter frequency ωc. The time delay τ
corresponding to the chatter frequency ωc can be de-
termined by substituting Eq. (12a) with ω = ωc into
Eq. (10) and solving for τ . The generalized oriented
transfer functions σ(ω) are all non-vanishing eigenval-
ues of Eq. (12b). Only chatter frequencies ωc, with
σr(ωc) < 0 for at least one of the generalized oriented
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transfer functions σ(ωc), can appear at the stability
lobes. The negative minimum of the real part σr(ωc)
of all oriented transfer functions specifies the mini-
mum of the limiting depth of cut bc. The eigenvectors
v corresponding to the eigenvalues σ characterize the
shape of the critical chatter vibrations at the stability
border with r(t) ∝ v(ωc) eiωct.

Eq. (13) is frequently used for one-dimensional sta-
bility problems as for example for turning processes.
One-dimensional stability problems are either char-
acterized by structures, which are flexible only in one
direction ev and rigid in the other directions, or by
only one fixed normal direction ev = eh, as for exam-
ple the y-direction in the turning process of Fig. (1).
In this case, there is only a single nonzero eigenvalue
of Eq. (12b), which is called oriented transfer func-
tion and can be specified by

σ(ω) = eT
v Φ(ω)Bcev, (14)

where the unit vector ev defines the relevant direc-
tion for the regenerative effect. Eq. (14) is a su-
perposition of the FRFs Φkl at the tool tip with
k, l ∈ {x, y, z, θ}. Concrete examples for oriented
transfer functions similar to Eq. (14) can be found
in [3].

In multi-dimensional stability problems, as for ex-
ample for typical milling processes, the coupled two-
dimensional dynamics is relevant for the regenerative
effect. For milling several attempts have been made
to establish an oriented transfer function in the form
of a superposition of the FRFs of the structure to
use Eq. (13) for the stability analysis. Some of them
are summarized in [3]. However, due to their struc-
tural similarity to Eq. (14) these approaches for the
oriented transfer function are only one-dimensional
approximations of the process. They only give accu-
rate results for special cases, as for example, if the
structural behavior at the tool tip is dominated by
vibrations only in one direction. With our definition
for the generalized oriented transfer functions σ(ω) as
eigenvalues of the matrix Φ(ω)Bc, the applicability
of Eq. (13) is extended to an exact stability analysis
of multi-dimensional cutting processes.

3.3. Discussion of the present approach

In the absence of process damping, Bd = 0, the
identification of stability lobes based on the analysis
of the eigenvalues of the closed loop for regenerative
chatter similar to Eq. (8) for multi-dimensional cut-
ting processes can be already found in the literature.
In [3, 4, 6, 20] a solution for the two dimensional
coupled dynamics in milling and in [22] a solution
for the coupled dynamics in drilling is presented. In
these papers the eigenvalues Λ(ω) = Λr(ω) + iΛi(ω)
are used for the stability analysis, corresponding to
the eigenvalue problem

vF (ω) = c1Λ(ω)BcΦ(ω)vF (ω), (15)

where c1 is some process-specific dimensionless con-
stant. The limiting chip width bc can be calculated
from the eigenvalues Λ by [3, 4, 6, 20, 22]

bc = −c1Λr(ωc)

2Ktc

(

1 +
Λ2

i (ωc)

Λ2
r(ωc)

)

. (16)

Here, the eigenvectors vF of Eq. (15) characterize
the shape of the critical force vibrations at the sta-
bility border with F(t) ∝ vF (ωc) eiωct. Eq. (15) and
Eq. (16) are equivalent to Eq. (12b) and Eq. (13), re-
spectively, where the relationships between the eigen-
vectors and eigenvalues are given by

v(ω) = Φ(ω)vF (ω), (17a)

σ(ω) =
1

c1Λ(ω)
. (17b)

Eq. (13) or Eq. (16) can be used for the optimiza-
tion of the structural behavior of the machine tool
[18, 19] by a modification of the eigenvalues σ(ω)
or Λ(ω). The advantages of our generalization of
Tlusty’s law, presented in Sec. 3.2, are the simple
relationship Eq. (13) between σ and bc, and the inter-
pretation of σ as generalized oriented transfer func-
tions. An increase of the negative minimum of the
real part σr of the generalized oriented transfer func-
tions leads to a stabilization of the process. If, in-
stead, the eigenvalues Λ of Eq. (15) are used, a more
complex expression of the eigenvalues Λ has to be op-
timized, as can be seen from Eq. (16). In addition,
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for some multi-dimensional problems very simple re-
lationships between the real part σr(ω) and the FRFs
Φkl(ω) of the structure can be derived, as can be seen
for the slot milling example in Sec. 4.4

In case of process damping, Bd 6= 0, Eq. (13) or
Eq. (16) can be only used in an iterative way for the
identification of the stability lobes, as proposed for
example in [6, 8]. In these papers bc is calculated
with Eq. (16) without process damping and the re-
sult is used to add some additional process damping
term to the structural damping. Then bc is again cal-
culated by Eq. (16) with the modified damping term
and the procedure is repeated until the results con-
verge. With the approach of Sec. 3.1 for the identifi-
cation of the stability lobes with the eigenvalues λ as
defined in Eq. (9) no iterative procedure is necessary.
The stability lobes can be calculated directly with
Eq. (10) and Eq. (11), as it is shown in the example
in Sec. 4.1.

Furthermore, with the eigenvalues λ, the limiting
chip width bc can be calculated very efficiently for
a specific spindle speed Ω, which makes it suitable
for an implementation on the numerical control of a
machine tool. With Eq. (13) or Eq. (16) only a rela-
tion between the limiting chip width bc and the chat-
ter frequency ωc is given, whereas the corresponding
spindle speed Ω has to be determined additionally.
Thus, the method, presented in Sec. 3.1, for the cal-
culation of the limiting chip width bc can be conve-
nient even in the case without process damping.

4. Examples

4.1. Turning with process damping

As a first example the stability of a turning pro-
cess with process damping is investigated. The pa-
rameters are chosen from the example of [5, 8]. Only
one structural mode in normal direction with mass
m = 0.561 kg, damping coefficient c = 145 Ns/m and
stiffness k = 6.48 × 106 N/m is assumed

Φyy(ω) =
(

−mω2 + iωc + k
)−1

. (18)

The other FRFs are assumed to be zero, i.e. the
structure is assumed to be infinitely stiff in the other
directions.

The geometric properties of the process are given
by

eh =

(

0
1

)

, T =

(

±1 0
0 1

)

. (19)

Depending on the rotational direction of the spin-
dle the tangential cutting force on the tool acts in
positive or negative x-direction. The geometry of the
process is illustrated in Fig. 1 for the case of clockwise
spindle rotation with the positive sign in the matrix T

in Eq. (19). The axial and torsional components are
dropped, because the influence of vibrations in these
directions on the chip thickness is typically negligible
[14]. The coefficient matrices are

Bc =

(

0 ±1
0 knc

)

, Bd =

(

0 ±ktd

0 knd

)

. (20)

Since the machine tool structure is assumed to be
rigid in x-direction the eigenvalue of Eq. (9) for this
example is

λ(ω, τ) = Φyy(ω)
(

knc(e
−iωτ −1) − kndiωτ

)

. (21)

It is independent of the behavior of the tangential
cutting force and the rotational direction of the spin-
dle. The eigenvector corresponding to λ in Eq. (21) is
u = (0, 1)T . This means that the tool vibrates only in
the y-direction, which is clear, because the structure
is assumed to be rigid in the other directions.

The stability limits were calculated for one thou-
sand spindle speeds with the method presented in
Sec. 3.1. It takes only a few seconds on a conven-
tional CPU, because in contrast to the method pro-
posed in [8] no iterative procedure is necessary for the
calculation of the stability lobes. The cutting force
parameters Ktc = 2580 N/mm2, knc = 0.536 and
knd = 0.00215 in this example are taken from [5, 8].
The stability lobes are shown in Fig. 2 and coincide
very well with the results from the literature.

4.2. Influence of rotational direction in turning

In this section a complex structural model for the
turning process is considered, were no structural FRF
in the x-y-plane can be neglected. Now, process
damping is assumed to be negligible, Bd = 0, to fo-
cus on the influence of the rotational direction on the
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Figure 2: Stability lobes for turning with process damping
calculated with the method presented in Sec. 3 and paramters
as used in [8] coincide well with the results from the literature.

stability lobes. With the geometry of the previous
example (see Fig. 1) and the coefficient matrix Bc of
Eq. (20) the nonzero eigenvalue of Eq. (12b) is

σ(ω) = Φyy(ω)knc ± Φyx(ω). (22)

The eigenvector corresponding to the ori-
ented transfer function in Eq. (22) is v(ω) =

(Φxy(ω)knc ± Φxx(ω),Φyy(ω)knc ± Φyx(ω))
T
, which

means that the shape of the tool vibration depends
on the chatter frequency ω and is in general not
restricted to the normal direction eh as in the
previous example. In contrast to Eq. (21) for a
rigid structure in x-direction, the oriented transfer
function σ in general depends on the rotational
direction of the spindle. The positive sign of the
cross FRF Φyx in Eq. (22) corresponds to clockwise
spindle rotation as in Fig. 1, whereas a negative
sign is associated to counterclockwise rotation of the
spindle. Of course, in addition another turning tool
is necessary for the same process with the inverse
rotational direction, which can cause modifications
of the structural FRFs Φyy and Φyx. However, due
to the low mass of the turning tool compared to the
mass of the machine tool, these modifications will
be relevant only for tool modes at high frequencies,
whereas the low frequency machine tool modes will
remain almost unchanged.

The effect of the rotational direction of the spin-

dle on the chatter instability in a real turning pro-
cess is illustrated in Fig. 3. The two relevant FRF
at the tool tip of a CNC lathe Gildemeister CTX
400 E, obtained by impact hammer tests, are shown
in Fig. 3(a). The magnitude of the cross FRF Φyx

is lower than the magnitude of the direct FRF Φyy.
However, the parameter knc in the oriented transfer
function σ of Eq. (22) is typically much lower than
one and weakens the influence of the direct FRF on
the chatter stability in relation to the influence of
Φyx. The real part of the two oriented transfer func-
tions with knc = 0.5 for clockwise and counterclock-
wise spindle rotation are shown in Fig. 3(b). The
limiting chip width bc is determined by the negative
real part σr of the oriented transfer function accord-
ing to Eq. (13). Especially for the structural modes
with low frequencies the oriented transfer functions
are completely different for the two opposite orienta-
tions of the tangential cutting force. The chatter fre-
quencies are shown in Fig. 3(c). For clockwise spindle
rotation they are mainly between 75 Hz and 125 Hz,
which correspond to the minima of the real part σr

of the oriented transfer function (cf. Fig. 3(b)). For
counterclockwise rotation chatter frequencies or neg-
ative minima of σr, respectively, can be found slightly
larger than 75 Hz, 140 Hz and 1575 Hz. In Fig. 3(d)
the stability lobes for the turning example for both
rotational directions with a tangential cutting force
coefficient Ktc = 1500 N/mm2 are shown. They were
calculated directly from the measured frequency re-
sponse data. The structure of the stability lobes is
completely different for the two rotational directions
and there is roughly a factor two between the global
minima of the lobes. Hence, the cross FRF has a sig-
nificant influence on the chatter vibrations in turning
and causes a different location of the stability lobes
and different chatter frequencies for different rota-
tional directions of the spindle.

In some situations the cross FRF can also dom-
inate the oriented transfer function. This situation
occurs for the mode with an eigenfrequency of 140
Hz and is emphasized by dotted circles in Fig. 3. For
this structural mode the magnitude of the cross FRF
is approximately equal to the magnitude of the direct
FRF as can be seen in Fig. 3(a). The behavior of the
real part σr of the oriented transfer function is domi-
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Figure 3: The magnitude of the cross FRF Φyx is smaller than the magnitude of the direct FRF Φyy (a), but the cross FRF
is responsible for the significantly different behavior of the oriented transfer functions (b), chatter frequencies (c) and stability
lobes (d) for the two different rotational directions.

nated by the cross FRF Φyx. For frequencies around
the eigenfrequency of 140 Hz, according to Eq. (22)
the sign of σr is opposite for the two opposite rota-
tional directions (see Fig. 3(b)). Consequently, the
local minima of σr and the chatter frequencies ωc are
lower than 140 Hz for clockwise rotation and larger
than 140 Hz for counterclockwise rotation. This can
be seen in Fig 3(c) at 3200 rpm and 4600 rpm, where
the limiting chip width bc is determined by the 140
Hz mode. The case with lower eigenfrequencies for
clockwise rotation is equivalent to the unusual case of
a negative directional factor in the modal description
of regenerative chatter in turning, where an increase

of the cutting force tends to move the tool deeper
into the workpiece [23].

The presented results for the dependence of the
chatter stability on the rotational direction in turn-
ing are qualitatively independent of the cutting force
behavior or the machine tool. A lower value of knc

enhances the influence of the cross FRF on the stabil-
ity and the differences between the lobes of clockwise
and counterclockwise rotation are increased. Higher
knc weakens the differences in the stability lobes of
the two orientations.
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Figure 4: Geometry of a drilling process

4.3. Axial-torsional chatter in drilling

Under reasonable assumptions axial-torsional and
lateral chatter in drilling is decoupled from each other
and can be analyzed separately [22]. In [24] a model
for axial-torsional chatter in drilling was introduced
using modal coordinates of the drill. Here an alter-
native view on axial-torsional chatter vibrations in
drilling is presented, where no modal analysis of the
structure is required.

The geometry of a drilling process is illustrated in
Fig. 4. Only the axial displacement z and the torsion
angle θ of the tool are considered, r = (z, θ)T . The
normal direction eh and the matrix T for this process
are

eh =

(

1
0

)

, T =

(

0 1
−Rav 0

)

, (23)

Here, the matrix T transforms tangential Ft and nor-
mal cutting forces Fn at the cutting lips into axial
forces Fz and moments M about the drill axis. In
practice the moment M is generated by a force dis-
tribution along the cutting edge. In the theory the
moment M is generated by the product of Rav with
the tangential cutting force Ft, interpreted as a point
force as illustrated in Fig. 4, which defines the ra-
dius Rav. The matrix of the structural FRFs and the
coefficient matrix of the cutting force are

Φ =

(

Φzz Φzθ

Φθz Φθθ

)

, Bc =

(

knc 0
−Rav 0

)

. (24)

The matrix Φ specifies the structural behavior of
axial-torsional vibrations at the tool tip. In par-
ticular Φzz and Φzθ describe the behavior of axial
displacements z in response to an axial force and a
moment, respectively. The behavior of torsional dis-
placements θ in response to an axial force and a mo-
ment is characterized by the FRFs Φθz and Φθθ, re-
spectively. Again for convenience no process damping
is considered but could be easily included. Accord-
ing to Eq. (12b) the nonzero eigenvalue of the matrix
product ΦBc determines the oriented transfer func-
tion

σ(ω) = Φzz(ω)knc − Φzθ(ω)Rav. (25)

Bayly et al. [24] have shown that the structural be-
havior of a twist drill is comparable to the behavior
of a twist beam. The cutting torque against the ro-
tational direction untwists the drilling tool. This is
associated with an increase in its length. In other
words, the axial cutting force leads to a decrease of
the drill length, whereas simultaneously the tangen-
tial cutting force tends to increase the length. In [24]
the structural dynamics in axial direction is domi-
nated by the cross FRF Φzθ or the structural dis-
placements in response to a torque, respectively. This
leads to a negative directional factor in the modal
description and chatter frequencies below the eigen-
frequency of the critical axial-torsional mode.

An optimal balance between the two mechanisms
of increasing and decreasing drill length due to nor-
mal and tangential cutting forces is characterized by
a cancellation of the two terms in Eq. (25) resulting in
σ = 0. Theoretically, in this case axial-torsional chat-
ter vibrations are completely eliminated. In practice
at least a stabilization of axial-torsional vibrations in
drilling is possible by raising the negative minimum
of the real part σr of the oriented transfer function.
Thus, Eq. (25) is suitable for an optimization of the
structural behavior during the design of drilling tools.

4.4. Slot milling

In general a milling cutter has multiple teeth re-
sulting in more than one matrix T and multiple cuts
with normal directions eh. Furthermore, the process
geometry is time-varying due to the rotation of the
cutter, T = T(t) and eh = eh(t). The analysis in
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Appendix A or the formulas in [3, 4, 20] can be used
for the calculation of the coefficient matrix Bc. In
the case of slot milling with full radial immersion of
a uniform tool with four teeth and negligible process
damping one obtains

Bc =

(

knc +1
−1 knc

)

. (26)

Indeed, the matrix of directional factors in Eq. (26)
is time-averaged but for full immersion milling this
zeroth-order approximation leads only to slightly dif-
ferent stability lobes in comparison to the lobes with
exact time-variant cutting force coefficients [3, 4, 16,
20]. If cross FRFs of the structure can be dropped
the two eigenvalues of the matrix product ΦBc are

σ1,2(ω) = knc

Φxx(ω) + Φyy(ω)

2

±
√

k2
nc

4
(Φxx(ω) − Φyy(ω))2 − Φxx(ω)Φyy(ω).

(27)

In contrast to the previous one dimensional exam-
ples, the two generalized oriented transfer functions
for slot milling σ1,2(ω) of Eq. (27) cannot be writ-
ten as a superposition similar to Eq. (14). In fact,
they are the exact oriented transfer functions and in-
clude the two-dimensional coupled dynamics during
the process at the stability border. The σ1,2(ω) in
Eq. (27) can be used for computing the stability lobes
with our generalization of Tlusty’s law, Eq. (13). In
addition they are suited for getting insight into the
chatter mechanism in milling. Two limiting cases are
investigated in the following.

The first case corresponds to a structural behavior
which is dominated by a single mode. If the direct
FRF in mode direction is characterized by Φm and
there is an angle α between the mode orientation and
the feed direction x, the matrix with the FRFs in
Cartesian coordinates can be written as

Φ(ω) = Φm(ω)

(

cos(α)2 sin(α) cos(α)
cos(α) sin(α) sin(α)2

)

.

(28)
Obviously, in this limiting case the problem drops
down to a scalar problem. There is only one nonzero

eigenvalue of the eigenvalue problem of Eq. (12b)
with the eigenvector v = (cos(α), sin(α))T . This cor-
responds to a tool vibration in the mode direction.
The nonzero eigenvalue σ = kncΦm is independent of
the mode orientation α. It can be interpreted as the
oriented transfer function for this one-dimensional
approximation of the milling process dynamics. The
special case with α = 90◦ coincides with an example
shown in [3].

The second case is the limiting case of a symmet-
ric structural behavior, where the FRFs in x− and
y− direction are equal, Φxx = Φyy = Φ̄. In this
case the two generalized oriented transfer functions
of Eq. (27) are σ1,2(ω) = Φ̄(ω)(knc ± i). According
to Eq. (13) the negative real part of σ(ω) determines
positive critical chip widths bc. Thus, as long as the
imaginary part Φ̄i of the FRF is negative, only the
eigenvalue

σ(ω) = Φ̄(ω)(knc − i), with (29a)

σr(ω) = Φ̄r(ω)knc + Φ̄i(ω), (29b)

is relevant for the calculation of stability lobes for
slot milling with a nearly symmetric tool. Moreover,
for typical structural and process parameters knc can
be assumed to be zero in Eq. (29a) and Eq. (29b)
resulting in

σ(ω) ≈ −iΦ̄(ω), with (30a)

σr(ω) ≈ Φ̄i(ω). (30b)

The corresponding eigenvector is v = (i, 1)T , which
means a circular tool vibration in the x-y-plane. Even
though, there is a strong coupling between the two
spatial directions and the chatter problem is obvi-
ously two-dimensional, the stability behavior can be
obtained from Eq. (13). However, in the approxi-
mation of Eq. (30b) the imaginary part of the FRF
determines the real part σr of the generalized ori-
ented transfer function and the limiting chip width
bc. This is opposite to turning, drilling and other
one-dimensional processes where the real part of the
FRFs determines the limiting chip width. As a con-
sequence the chatter frequencies at the stability lobes
in milling are not strictly below or above the critical
eigenfrequencies of the structure but rather around
the eigenfrequencies of the structure.
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(a) Magnitude of direct FRFs Φxx (solid) and Φyy (dashed)
in the lateral x- and y-direction at the tool tip of an end
mill.
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(b) Real part σr of the exact (solid, black) oriented transfer
function Eq. (27) and approximations Eq. (29b) (dashed,
red) and Eq. (30b) (dotted, green).
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(c) Chatter frequencies ωc for exact (black dots) σ(ω)
Eq. (27) and for approximations Eq. (29b) (red crosses)
and Eq. (30b) (green circles).
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(d) Critical chip width bc for exact (solid, black) σ(ω)
Eq. (27) and approximations of Eq. (29b) (dashed, red)
and Eq. (30b) (dotted, green).

Figure 5: (Color online). The magnitude of the direct FRFs Φxx, Φyy in x-, y-direction are approximately equal (a) and the
exact oriented transfer function of Eq. (27) can be approximated by Eq. (29b) and Eq. (30b) (b). As a result there are nearly
no differences between the exact and the approximated chatter frequencies (c) and stability lobes (d).

Especially the approximation for symmetric struc-
tural behavior seems to be relevant in a wide range
of cutting conditions and applications. In Fig. 5
the accuracy of the approximations Eq. (29b) and
Eq. (30b) for the generalized oriented transfer func-
tions is demonstrated for experimental data of a real
slot milling process. In Fig. 5(a) experimental mea-
surements of direct FRFs in x- and y-direction of a
milling cutter at the tool tip are shown. The end mill
with a diameter of 20 mm and a length of 104 mm
was mounted in a Starrag Heckert HEC 500 machin-
ing center. The dominant eigenfrequencies of the tool

in x- and y-direction are close to each other at 1100
and 1140 Hz. In y-direction also a peak at 1475 Hz
occurs. The exact real part of the relevant general-
ized oriented transfer function according to Eq. (27)
as well as the proposed approximations Eq. (29b) and
Eq. (30b) are shown in Fig. 5(b). Since in this prac-
tical example the direct FRFs Φxx and Φyy in x−
and y− direction do not match exactly, the relation
Φ̄ = (Φxx + Φyy)/2 is used for the approximations.
The ratio between normal and tangential shearing
force is set to knc = 0.3. Both approximations fit
the exact eigenvalue very well especially around the
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negative minimum of the real part. The chatter fre-
quencies are shown in Fig. 5(c). As expected from
the theory and contrary to the turning example they
are not merely below or above the eigenfrequencies
of the structure at 1100 Hz, 1140 Hz and 1475 Hz
but rather around them. In Fig. 5(d) the stability
lobes are presented for a tangential cutting force co-
efficient Ktc = 900 N/mm2. It can be seen that the
difference between exact and approximated stability
lobes is very small. Already the simple approxima-
tion with the averaged imaginary part Φ̄i (dotted,
green) of the FRF according to Eq. (30b) is suffi-
cient for the identification of the stability lobes for
full-immersion slotting. It can be used for an opti-
mization of the structure of machine tools and for an
optimization of the cutting process.

5. Conclusion

A unified approach for the stability analysis of re-
generative chatter in machining is presented. The
analysis in the frequency domain can be used for the
calculation of stability lobes for turning, drilling, bor-
ing or milling by taking into account process damp-
ing. The procedure is quite simple and can be used
for the identification of stability lobes in a few sec-
onds without the necessity of any iteration. Because
no modal analysis is necessary the method is suit-
able for an implementation directly on the numerical
control of a machine tool.

Furthermore, a unified treatment of the eigenvalue
problem for the determination of the stability lobes
in the absence of process damping is presented based
on a generalization of the well-known stability law
of Tlusty in Eq. (13). It is shown, that the eigen-
values of the product of the matrices of the FRFs
and the directional factors are generalized oriented
transfer functions in multi-dimensional cutting pro-
cesses. Oriented transfer functions are derived for
basic turning and drilling examples. They give an al-
ternative insight into the dependence of the stability
lobes on the rotational direction in turning and on the
axial-torsional structural coupling in drilling. For the
coupled two-dimensional dynamics in slot milling the
generalized oriented transfer functions are derived.

In particular for slot milling with a nearly sym-
metric structural behavior it was revealed and ver-
ified by experimental data, that in fact the limit-
ing chip width is determined by the imaginary part
rather than the real part of the structural FRF. The
presented approximations of the relevant generalized
oriented transfer function for milling still contain the
coupled two-dimensional dynamics and they are not
comparable to existing one-dimensional approxima-
tions of the milling process. The resulting simple re-
lation between structural FRF and the limiting chip
width can be used for an efficient optimization of ma-
chine tool structures with respect to dynamic stabil-
ity already during the design stage.
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Appendix A. Cutting force model for com-

plex process geometry

In this section a detailed description for the deter-
mination of the cutting force coefficient matrices Bc

and Bd is given. It is applicable for complex process
geometries with multiple cuts and time-variant orien-
tations, as well as for considering nonlinear cutting
force laws and forces into a third spatial direction.

Appendix A.1. Cutting force law

The cutting force law describes the differential cut-
ting force

dFtna(t,∆, ṙ; i, z) =
(

fc(h(t,∆; i, z)) + Kde
T
h τ ṙ

)

dz
(A.1)

in local tangential, normal and axial coordinates at
the cutting edge for differenatial segments dz of the
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chip width. The function fc(h) specifies the possibly
nonlinear behavior of the shear forces and the vec-
tor Kd = the behavior of the process damping force.
Some empirical laws for the shear force are summa-
rized in [9] and some laws for the process damping
force can be found in [5, 6, 7].

Appendix A.2. Chip thickness

The chip thickness at the ith cutting tooth and
position z

h = h(t,∆; i, z) (A.2)

is a function of time t and of regenerative dynamic
displacements ∆ of the tool center point

∆(t) = r(t − τ) − r(t). (A.3)

The explicit form of the chip thickness h depends on
the specific geometry of the process.

Appendix A.3. Process force

The differenatial cutting forces dFtna in local coor-
dinates at the cutting edges are transformed via the
4×3 matrix T(t; i, z) into differntial cutting forces in
Cartesian coordinates

dF(t,∆, ṙ; i, z) = T(t; i, z)dFtna(t,∆, ṙ; i, z). (A.4)

The process force is the summation of the differential
components dF over all N teeth integrated from z =
0 to the chip width b

F(t,∆, ṙ) =
N

∑

i=1

b
∫

0

dF(t,∆, ṙ; i, z). (A.5)

It can be separated into shear forces and process
damping forces as

F(t,∆, ṙ) = Fc(t,∆) + Fd(ṙ) (A.6a)

Fc(t,∆) =
N

∑

i=1

b
∫

0

T(t; i, z)fc(h(t,∆; i, z))dz

(A.6b)

Fd(ṙ) =

N
∑

i=1

b
∫

0

T(t; i, z)Kde
T
h τ ṙ(t)dz (A.6c)

Fd(ṙ) = −bKtcBd(t)τ ṙ(t), (A.6d)

where Eq. (A.6d) is the expression of the process
damping force similar to Eq. (4). By comparing
Eq. (A.6c) and Eq. (A.6d) the coefficient matrix of
the process damping force can be identified as

Bd(t) = − 1

bτKtc

N
∑

i=1

b
∫

0

T(t; i, z)Kde
T
h dz. (A.7)

Appendix A.4. Linearization

Typically the process force F(t,∆, ṙ) depends non-
linearly on the regenerative displacements ∆. The
chatter instability is determined by the exponential
behavior of small dynamic perturbations rdyn of the
stable cutting dynamics. Stable cutting is typically
characterized by a periodic relative motion rs be-
tween tool and workpiece with the spindle rotation
period and with ∆ = 0. The dynamics of the per-
turbed solution r = rs + rdyn is composed of the
solution for stable cutting rs and the small pertur-
bation rdyn. The dynamic process force Fdyn, which
describes the difference of the force between the per-
turbed and the stable solution, is obtained by lin-
earization of the process force F(t,∆, ṙ) of Eq. (A.6a)
around ∆ = 0

Fdyn(t,∆, ṙ) =
dFc(t,∆)

d∆

∣

∣

∣

∣

∆=0

∆dyn(t)

−bKtcBd(t)τ ṙdyn(t),

(A.8)

where dFc

d∆
denotes the Jacobian of Fc(t,∆) of

Eq. (A.6a). By comparison of Eq. (A.6a) and Eq. (4)
the coefficient matrix of the dynamic shear force can
be determined by

Bc(t) =
1

bKtc

N
∑

i=1

b
∫

0

T(t; i, z)f ′c(h(t,0; i, z))
dh

d∆
dz,

(A.9)
with the derivative f ′c of the cutting force law.

Appendix A.5. Zeroth order approximation

For a complex process geometry the cutting force
coefficients are time variant with period T of the
spindle rotation as can be seen from Eq. (A.7) and
Eq. (A.9). For the chatter stability analysis in many
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cases the zeroth order approximation is sufficient,
which takes only the zeroth component of the Fourier
series into account. Then the coefficient matrices for
the dynamic process force are just the time averages
over one period

B̄c =
1

T

T
∫

0

Bc(t)dt, B̄d =
1

T

T
∫

0

Bd(t)dt. (A.10)

The averaged coefficient matrices B̄c and B̄d can be
used for the frequency domain stability analysis in
Sec. 3.
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